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BROADENING OF SPECTRAL LINES IN A HOMOGENEQUS GAS#¥
(COUPLING WIDTH)

V. Furtsev and A. Vlasov

1. 1Introduction and Summary /378

The problem of the broadening of spectral lines in gases due
to an increase in the density of the principal gas has long been
treated frequently in the literature from both the experimental
and the theoretical standpoint. It has been-determined experi-
mentally that the broadening assoclated with an increase in the
density of the principal gas is considerably more pronounced than
that accompanying the addition of a foreign gas [1-3]'. This /378
specific broadening of lines due to the interaction of identical
atoms has been named coupling width.

In order to explain coupling width in theoretical terms, a
number of experiments were undertaken which must certainly be
considered unsatisfactory. The purpose of this article is to
i1l this gap and to provide a reasonable theory for the excessive
broadeningnof spectral lines which occurs when the density of the

gas from which they originate 1s increased.

The basic idea of most theoretical works on coupling width
that have so far appeared is based on the fact that when linear

! In the last of these articles, Minkovski, while measuring the

natural width of the sodium D line at relatively low pressure,
notes a broadening of the line as a function of gas density.
See also the summarizing article by V. Weisskopf [417.

¥ Delivered at the colloguium of the Theoretical Section of the

" Physics Institute of the Academy of Sclences and of the Scien-
tific Research Institute for Physics at Moscow State
University, March 3, 1936, ~

## Numbers in the margin indicate pagination in the foreign text.




coupling occurs between two equivalent harmonic osclllators,
splitting of frequencles takes place, from which 1t 1s concluded
that the system of equivalent atoms experiencing dipole inter-
action is already absorbing or emitting 1n a certain region of
the spectrum [5, 6].

Holtsmark, in particular, has calculated the width of this
region with the aid of classical theory. He views the gas as a
system of N equivalent, immobile, linear harmonic oscillators
orlented in parallel which are linked by dipole interaction.

Such a system generally possesses N frequencies. Holtsmark has
calculated the mean square deviation in the frequency of the system
from the frequency of an unperturbed atom and also averages them
for all possible positions of the oscillators relative to one
another. The quantity vAw< obtained in this manner is equated

by Holtsmark with the width of the spectral lines. Frenkel [7]
has essentially repeated Holtsmark's studies in terms of gquantum /380
theory and has arrived at a similar result. However, Holtsmark'ts
and Frenkel's ideas are not tenable and cal;-fon refutatlion:
Weisskopf [8] has subjected them to detailed criticism. We

would like to add the following to this eriticism: First, in
considering the question of the broadening of spectral lines due
to interaction of the atoms, we may not replace the gas with a
model that consists of immobile, unidimensional, parallel oscil-
lators, since the peculiarities which are essential for the
problem to be studied are lost in the process; this can be seen
from our further consideration of a model of three-dimensional
oscillators in Section 5. Secondly,, Holtsmark's theory 1s not
satisfactory within the scope of consideration of the assumed
model: it yields a finite broadening of spectral lines even for
regularly positioned, linked oscillators, whereas no broadening
oceurs in this case, but only a shift in the line, as Vlasov has
demonstrated - exactly [9]2. "In order for the frequency to appear

2 gee also Section 2 of our article.



in the spectrum, it is not at all sufficlent that it be inherent
to the system; rather, in classical terms, 1t must also be op=i

tically active.

For a gas 1n which the particles are experiencing irregular
motion and from time to time can pass one another at short
distance, we can assume that only those phenomena are important
for the broadening of spectral lines at a limited density which
oceur as the result of the interactlon between two atoms
precisely as they approach one another closely. This is the basie
ldea of Lorentz collision damping, to whose correctness
Weisskopf [8, 10] referred for the first time with regard to the
case of a homogeneocus gas -- 1n constrast to its consideraticn
as a system of coupled immobile cosclllators. The proncunced
broadening of spectral lines accompanying compression of the -« /381
principal gas 1Indlcates that 1t 1s connected with an interaction
between atoms at relatlvely long dlstance; thus it is quite
natural, in seeking a theoretical explanation of this broadening,
to attempt to consider only the dipole foreces in the interaction
between two equivalent atoms. For this reason, Wélsskopf replaces
the atoms with ldentical linear oscillators which interact via
the dipocle fields and calculates optical céllision diameter and,
from this, the broadening of the spectral line, which agrees
satisfactorily with the experimental data. To be sure, Wéisskopf's
consideration of collision between the ldentical atoms 1s neot
quite correct. Without sufficient grounds, Welsskopf applies the
correct idea of the mechanism of collision damping for non-
extinguishing atoms of different types t¢ collisions between
identical atoms. We know that the broadening of lines due to
collisions cccurs not only when the train of waves emitted by the
atom departs after collision (extinguishing gas)}, but also when
a change in the phase of oscillation of the exclted atom oceccurs
upen collision (nonextingulshing collisions). In order to cal-

culate the phase shift accompanying collislon, we must use the



change in frequency Aw of the emitting atom which results from
interaction with foreign atoms, and integrate over collisilon time;
if we set this integral equal to 1, we can evaluate the magnitude
of optical collision diameter theorétically. In place of Aw,
Weisskopf arbitrarily uses the difference between the freguency of
one of the normal oscillations of a system of two dipole-linked
identical linear oscillators and the frequency of the isclated
atom for collisions between identical atoms. It is clear that

this calculation is based on a misunderstanding. Aw is in

essence the change in frequency of the emitting atom, the light
from which is analyzed by the Fourler method. Due to degeneration,
however, what Weisskopf has used 1n its place has nothing at all
to do with thils matter. Lenz [11]% also commits a similar error /382
following Weisskeopf in a later article.

The idea that when two atoms of the same type of which one
is excited and the other 1s not excited collide, the coscillatory
phase of the excited atom changes, does not correspond at all to
reality. The thermal motion of atoms can be considered slow
relative to the intraatomic movement of electrons. If we there-
fore imagine that an excited atom passes close to a similar atom
whieh is not excited, then the energy of excitation will jJump
from one atom to the other due to the collapse of the energy level
under the influence of the dipole energy of °~ - interaction®; ex-
pressed in classical terms, the amplitude of the emitting atom
will change. Depending upon the distance at which the atoms pass
one another, the excited atom gives up a portion of 1ts energy or

all of its energy to the other atom, or a repeated transfer can

* This error has been repeated time and again until recently, e.g.
* in the summarizing article by Margenau and Watson..[12].

It must be said that the question of the transfer of energy of
excitation between atoms has long been covered in quantum theory
by Kallmann and London, but without going into the broadening

of spectral lines. See [13] and [14].



take place. It is clear that in the case of ordinary types of
excitation, when only an infinitesimal fraction of all atoms are
excited, the emitting atom will pass unexcited atoms almost
exclusively and will‘génerally lose ;its energy, and its amplitude
will decrease more rapidly than during natural decay. We can
describe this phenomenon in part as follows: Dbecause the

emitting atom moves in the vieinity of unexcited atoms of the

same type, the motion of the electron in 1t experiences an addi-
tional "friction." This friction is also one of the causes of the /383
broadening of spectral lines during compression of the principal
gas. Aside from this friction effect, which 1s caused by atoms'
passing one another at relatively long distance, i.e..1in those
cases in which energy can jump in only one direction -- from the
particular atom -- still another exists which occurs at shorter
ranges (collisions), in which case a more considerable change in
the motion of the electron is produced. Here, amplitude can change
net only in magnitude but also in direction. Consideration of
these short-range collisions causes another component of spectral
line broadening which apprecaches the former 1n order of magnitude.

These two components are additive.

In the work covered by this article, the brecadening of spec-
tral lines which accompanies compression of the prinecipal gas
was calculated on the basls of the above conslderations. For the
form of the line, this calculation yields a dispersion-like
distribution with a width that 1s proportional to density and 1s
independent of temperature. The values found theoretically for
the magnitude of broadening agree satisfactorily with the em-
pirical data. In our discussion, we shall restrict ourselves to
the case of light emission. In Section 3, the atom is replaced
with a model consisting of a three-dimensional oscillator whose
motion is described by the laws of classical mechanics; even this
mode of representation essentially yields correct results, as was
alsc to be expected in the case of the question which i1s belng
debated. In Section 4, the guantum theory of broadening is



presented; it yields a result whose difference from the classical
result consists of a meaningful refinement. Finally, considera-
tions are presentéd which make 1t possible to at least quali-
tatively cover the effects of the emission which occurs during
collision upon the form and width of the 1line,

2. The Effect of Coupling, Demonstrated with the Example of a /384
Linear Chain

The content of the preceding paragraphs does not represent
anything really new. It is meant to show that the presence of
coupling between similar cosclillators and thus of frequeney
splitting is not enough to cause the broadening of a spectral line.
The physical reason for this is that the frequencies which occur
are the freguencles of the system's normal coordinates. Thus
the corresponding oscillations of the individual dipoles assume
¢ertain phase relationships. This leads to interference in the
emissions of the individual oscillators and, consequently, to the
disappearance of several frequencies in the spectrum and, in the
case of a regular distribution, for example, to the complete
extinction of all except one frequency. In order to demonstrate
this, we consilider -- for the sake of simplicity -- an infinite
linear chaln of similar harmonic oscillators which are located at
equal Intervals from one another and are linked by dipole 1lnter-
action. If we take the straight line of the chadin as the

direction of oscillatlion, we then have

2
Y e R
for the force which acts upon the 2%h ggcillator from the kth,
where |Ry - Ry| is the distance between the oscillators being
considered and exy is the electrical moment of the kth oscillator.

The equations of motion are represented by the infinite

system
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where wy 1is the cyclic frequency of the isolated oscillator, m
1s the mass of an electron, and
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We seek the solution to system (1) in the form:

Xg = Agelwt.

By substitution, we obtain the system of equations
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for determining Ag. If the oscillators are regularly distributed,

system of eguations (2) permits exact solution

!
A= Ay e RHIE

If we substitute this into (2), we find that w and u are con-

nected by an infinite number of relations of the form

Wi == N et BBy f=0, 41,42, Lo |

h#r - !

\ R

Due to the regularity of distribution of the oscillators, how-
ever, all become identical, since the sum on the right side of

these relations does not depend upon the number & and, if we



collect terms with the same modulus 4k - 2| = 5 by palrs in the
sum, yields

. “ ' .
wg— w? = 2N g 08 nxd
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—

(3>

where d indicates the distance between neighboring osecillators.
The solution to the infinite system of equations (1)} will thus be
represented in the form of traveling waves from oscillator
elongatlons. Relation (3) yields the dilispersion law for these
waves. We see that the system under consideration possesses an
unlimited multiplicity of frequencies, which are determined from
equation (3) for each u; |u| can apparently range through all
values from zero to a certain maximum which depends upon d.

Let us conslider the radiation from the chain and look at the
radiation which corresponds to the dipole wave of a particular
wave number. In this case, the electric moment of the kth
osclllator will have the value

Pl edgmeremes

P l\
If we calculate the intensity of radiation at a relatively large /386
distance from the chain (Fraunhofer's case!) in the direction
which forms the angle 6 with a perpendicular to it, then the
phase of radiation from the k1 oseillator . will be at a distance
from phase k = 0 which -- if we disregard phase shift ukd -- is
increased by the amount

kd | !
S Sjnﬂ=.'(.kdsin8 ‘



where x = w/c, and ¢ is the velocity of light. Light excitation 3,
which is being sought, can be represented as

k=—co

+eo
S — const- E eﬂwt—l‘d(p-Hsin&)].

Since A > d for visible light, we can convert the sum into.. - .
the integral

- ,_.,..A-Ro » . ‘ .
N = const-e! "e—.—l‘:(u+ ssinB) g~ — onst.ei™a (P’ + 7 sio 3) J

-—C

where & represents the Dirac & function, which differs from zero
only at the point ﬁ + x8in8 = 0. We thus find that, out of the
"eontinuum" of possible frequencies for the chain in the optlcal
spectrum, only one occurs, for which

ut+t xsing = 0.

We find the magnitude of this "optically active" frequency by
substituting the value of y from (4) into relation (3). In the
case of observation perpendicular to the chain, 8 = 0, the condi-

tion for optical activity will simply be

and, for the optically active frequency,

ms-— = E ax

== (5)

which coincides with formula (9) in the article cited”[9]ui~Sdnce

A > d and ag decreases rapidly as s incréases, the fréquencies /387
emnitted at .other anglés will also differ only slight from that

shown in formula (5).



Thus the presence of a dipole link between the regularly
positioned oscillators does not produce a broadening of the lines,
but only their displacement, the magnitude of which is determined
by formula (5)°, As the calculation which we made with the aid of
perturbation theory shows, even just small fluectuaticns in the
distribution of atoms in the chain, which occur as the result of
thermal motion, produce no broadening of the line, as a first
approximation. Consideration of the three-dimensional case like-
wise presents nothing that is essentially new®. For an explanation
of line broadening in a gas, 1t is therefore more correct not to
proceed from the consideration of a system of immobile atoms, but
rather of atoms which are experiencing -',random motion, and to
take only those phenomena into consideration which occur as they
apprcach one another.

3. Classical Approach

We now assume the task of calculating spectral line wldth
for radiatlon emitted by a homogeneous gas. This radiation 1is
studied by -  first . passing it, for example, through a Nicol
prism whose plane of oscillation lies parallel to the z-axis. We
neglect natural decay and the Doppler effect here, and concentrate

on broadening as a function of gas density.

Let us assume that the line belng considered corresponds to
a transition of the atom to the ground state. We shall conceive
of the atom 1tself in the form of the classical model of a three-
Let us /388

o* LA

dimensional harmonle oscillator of cyclic frequency w
proceed from the assumptlion that the excited atom moves within

® In the case of absorption lines, the shift indicated by formula
(5) corresponds to what is obtalned from.the Lorentz-Lorensz
formula for the complex refractive index. The possibility of
finding it experimentally has been covered 1ln detall by
Weisskopf [47].

°cf. [15].
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the vieinity of the remaining atoms, and we study its radiation.
In addition, we shall neglect gas-kinetiecs collisions, 1l.e. those
collisions which appréciably altér the motion of the atom, since
they are relatively rare. We shall imagine the atom to move
linearly and uniformly at veloeclty v. We shall first study the
effect which the movement of the atompast another, unexcited atom
has upon electronic oscillation. Lét the unexeited atom be
located at the origin of the system of coordinate axes Xx,¥,%,
and let x7,y1,2z1 be the coordinates of 1ts electron. and
Xp,¥2,2p2 be the electron coordinates of the exclted atom in the
system. which moves with it and parallel to the first system. If
the distance R between the atoms is considerablerelative to thelr
size, we can then expand the potential energy due to forces of
Coulombic interaction with respect to powers of x1/R, y1/R, ...,
ZE/R and restrict ourselves to the first nonoscillating terms;
this yields the famlliar potential energy expression for dipole

interaction, which reads as follows in our coordinate system:

. & 2 3 C0sFE) mi (1B eS|
T :-R‘I [J'x-r:(l—.ittoj';- :.'"1."”1."]'.-(*—'-) c0=*3) ""-l".'u BensTy \

I
1 ] o \
— 3 (LY, COS A COS E -y T, COS X COS | T Ml p COSZCOS 2= (6)

< I, T. €OS B COS ¥ - 2,0, 00 COS 2 =+ 3,7, €05 COS B)]. /

Here, e is the charge of an electron and o,B,y are the angles
between radius vector R and the coordinate axes.

The equations of motion for the electrons of the first and
second atoms will assume the following form, taking interaction (6)
into consideration:

- eblpy i [(1—3c0s® 3} o —3cos g cosyr, — 3eos S eos ar,]=u
S et s [(1—15c0s®y) 1, — 3e0Sy CoR 2, — 3 0S5 CoS Iy,| == 0
Ly efy -1 (1 — 30082, -~ 3C08 2 ¢08 By, — 3 C052 €08, ] =0 l

P oI B =% - a > ] 3

'?J‘T"”ﬁ"r:‘r’-'[(l —=3COS R )L, — BC0S 2 COS Y. — S CoS A CuE T, =0 \
|
§
1

J (7)
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Zad 3, n [(1 —-3c082) s, —3eosy vosar, — 3coseos 3y, = v
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where we use the abbreviation

i

—

TN _\

B~

and m is the mass of an electron, In these equations, @,B,Y and A
are given time functions. Since the velocity due to the thermal
motion of the atoms is low compared to the intraatomic motion of
electrons, we can assume that these functions change only slowly
with respect to the inherent frequency of the change in coordinates.
To be sure, the change in these parameters due to degeneracy. of-’
the system is not adiabatic in Ehrenfest's sense, so we cannot
apply the methods of solution which are usual in these cases; we
therefore employ the method of successive approximations to solve
system of equations (7). The terms which express coupling in

this system, i.e. those terms which contain A, are small; thus we
can transfer them to the right side and substitute the! known
approximations for the sought functions into them. For the oth

approximation we use’

3411. — yllﬂl — :{lﬂl — 3-20) — yg"l =10 I

and

== Aveosof

If we substitute these values into the terms containing A in
equations (7) and then solve them, we can obtain the functions

? For the sake of simplicity, we assume an excitation:mechanism
here in which the linear mode of oscillation &f the electron
is excited.

12



being sought as a

first approximation?®.

W= ﬁf{f hcoszCosydf-sinwy!
2“)0

. ot
y§1)=§£f). cosfcosydf-sinwyt
T
‘.
i (1 — Bcos? 1) di-sin wgl

Ml = i

-Wp

;1.'9’:—.. y‘ﬂl) ={); .;2” = . ¢0% wut

(8)

8 Solutions (8) are a generalization of the resonance formula for
the case of a force of sdowly varying amplilitude.
be obtained on the basis of the followlng conslderations:
n1 satisfy the oscillation equatlon with the right member

GiVEn—starting

U ogn = N, \\

conditions n(0) = n(0) = 0,

(for example, see [16]) will be
' ’

when N(t) = a(t)cosmét_

1f we set T =

|
|

|
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T ey ‘

ot t

k1T tk+N1 T
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- kT kT
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2n/wgy, for example, a

?

%)= ;U') sin wl.t\ afty) iz, =
k \

tos 2w, ds ] —

f a{t)dz-sinwt.

‘

1
sin “’otf z <) (l + ¢0s 2Ty dr — cos wf | a (1) sih 2w, d,}. ==
0 }

and a(t) varies little during one
period, we can rewrite (A) approximately as follows:

r.m=.,,‘—{ - \
2wy ;

:
|
!

;
N

and assume that ¢t > T —-
neglecting the small terms -- we finally arrive at the formula

let

then its solutions

(&)

They can easily
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These solutions show that oscillations of the unexclted atoms are

induced in the first approximation.

Let us calculate the state of motion which the electron
experiences initially in theounexcited atom after the emitting
atom has passed it. We shall at first limit curselves to passing
at long ranges. What this refers to will become clear below.

The calculation of higher-order approximatlons for theissolutions /391
to equations (7) shows that only in the case of oscillation
amplitudes do ¢hanges result that occur in the form of rapidly
decreasing seriles; thus the amplitudes Xy,y31,2zZ; do not c¢hange in
the second approximation, for example, and the changes which
occur for them will be only third-order, fifth-order, etc. We
therefore use the solutions in the first approximation from
formula (8) for passing at long ranges. We let a,y,87,vy be the
angles between the direction of therexcited atom's path and the
coordinate axes, p the perpendicular which 1s dropped from the
unexcited atom to the direction of motion, and as,B82,yY2 the
angles which it forms with the coordinate axes. In order to
determine the amplitude of oscillation of the electron in the
initially unexcited atom, we assume that the atoms interact
during the course of time T, interaction beginning at time € = 0,
when the emltting atom 1s located at a distance of -vt/2 from
the base of the perpendicular p. From formula (8), amplitude,
e.g. Xl(l) after a pass will appear as follows:

iy p ' |

Jﬁp::i:— n.coszcosy dh ]
2w,

(9)

o

On the basis of elementary analytical geometry considerations, we
have

14
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I1f we substitute these wvalues into (9) and introduce the new var-
iable of integration t' = t - (X/2)r, we then obtailn

War. Gy

A +1fy 3 , o '
uqu.3A'EZl]'l?coszzﬁ*ff00510(?005734'FJTOS
j VU Dwg m V @+ v :

i
H

f
[ (11)

- - — B U AT

Analogous expressions are also obtained for Yil) and for Zil) from /392
(8). In these expressions, we can set 1T equalito «. The

resultant integrals can then be evaluated analytically, arnd we
ultimately obtaln the following formula for the osclllation am-
plitudes of the .electron in the initially unexcited atom after an

excited atom has passed it at range p:

A=, f (2 COS 2, 05 7, - COS 2 €05 7)
VL me, gtr e : -
= A 3 cosz cos gt cosy e0s) | (12)
L ey 8O e .
\ S
=" —:4— (2 cOS? 72 3~ c0s*§; — 1)
Ve, et

The maghlitude of transferred energy € can easily be determined

fram these equations; for this purpose, we must square the am-
plitudes and add them after first multiplying them by mw§/2.

If we do this and apply the condition that v and p be perpendicular,
we obtain

e 1 '
=y 8intY B,
mal it ey

i

(13)

15



2

where E = mw A2/2Arepresents the Dséiii&tory energy of the electron

in

1ls

o]
the passing excited atom. It 1s interesting to note that €

a function of yq, 1.e. of the angle which the direction of the

relative velocity of the atoms forms with the direction of
peolarization of the light emitted by the atom.

to

Formula (12) for the amplitudes can be used for ranges down
those at which the entire energy can jump to the unexclted

atom. The equation

e =& (11)

gives us the minimum value p, down %o which we can still describe

path range as long. From {13) and (14), we have

1 mo,

Ay = et / (15)

where we have replaced siny; Wwith its maximum value?®.

Thus the emitting atom will impart energy € as glven by

formula (13) to the unexcited atom at a range which is not very
short. This energy 1s transferred essentially during that time

in

which the exeited atom is located close to the base p of the

perpendicular dropped from the unexcited atom to its trajectory.

We

0

can therefore take the following approach in order to

8

16

A direct evaluation of the higher-order approximations in the
solutions to equations (7) shows that even for passes at range

Pos the next change in amplitudes x3,y1,z1 1s no.more than 20% of
the first approximation values from equations(8). In place of
siny, we have taken its maximum value, since we can use the
first approximations only if they remaln small for all values of
t, not just for t = «; our formulas (12) satisfy this. For

vy1 = 0, for example, our formulas (12) yileld values of zero

down to p = 0 for the first approximations, though these approxi-
mations are not monotonic functions of time in this case, and the
value py from the maximum for e yvields a value on the same order
as formula (15).
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caleculate the entire energy loss that occurs from a long_pdésing
range as the emitting atom moves through the homogeneous gas over
a distance :As = vdt: We sum the‘énergies.obtained from formula
(13} for all of the atoms which are located farther than pg in

the layer As thick standing perpendicular to the trajectory; 1if

N 1s the number of atoms per unit volume, we then obtain the
following for energy loss!'®:

o

o~

el 1 -
(E == — 32N~ ] grly = — =NAs ——— sin*y, = E,
=] iy S (16)

or ultimately, from (15):

~.
L)
e
=

dE = —=N - sinty, Edr, |
‘ leo ] ]

11

If we average this expression over yj3 and integrate, we

obtain
AE=E03—P"°.'
- (17)
where Eg is the initial energy of the excited atom, and
1 !'7 T - ]
- (18)

3% Strictly speaking, all of our calculations are correct as long

as the distances belng consldered are short compared to the
length of a 1light wave. It can easlly be seen that thls is
satisfied for the cases which are of Interest to us, since the
tvalues po obtalned from formula (15) are on the order of 10-7 cm.
The infinite limits of integration in integrals (11) and (16)

do not come under consideration, since the integrand decreases
sufficiently rapidly.

1l gee Supplement I.



It can be seen from equation (17) that even in the absence of
collisions, a decay of electronic oscillations occurs in the
emitting atom. In order to determine the_width of the spectral

line caused by this decay, we must halve 18); we thereby obtain

the following for the sought half-value width 8] (the distance

from the maximum to the value at which intensity drops to one-half),

expressed In the scale of cyclic frequencies:

"'=§’"“’o-h‘ (19)

Stated exactly, we obtain the width of the Fourler expansion
for oscillations of the oscillator under consideration in this
manner; for lline width, on the other hand, we need the expansion
for radiation which in our case is obtained from the radiation of
the initially excited atom and the radiations from those atoms
which have received energy from it, since the damping mechanism
taken into consideration does not provide for conversion of the
iight into any other form of energy. To'be sure, we cannot con-
sider this repeatedly excited radiation to interfere with the
original radiation; this can be seen immediately for its x- and
y-components; as far as the z-component is concerned, it too
will not be coherent, due to motion of the atoms, since as the /395
discussed decay begins to become apprecilablie at low gas density,
the atom can cover a distance, prior to finally emitting its
l1ight, that amounts to a multiple of the light's wavelength. We
can thus assume that the wldth of the spectral lines colneides
with the width of the Fourier analysis for oscillations of the
oscillator which was initially excited. The transferred energy
must, in the case of absorptlon, be the cause of additional light
dilspersion, whi¢h will probably be operant only in the region
near ws, (selective scattering).

In order to arrive at a correct result, we must apply a
correction to the classical calculation: we must multiply the
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quantity eg/m by eoscillator strength f; this 1s obtained directly

from quantum theory (see next section).

Thus the width obtained, Gr =,f6;, which results only from
long path ranges, already has the correct value and corresponds

in order of magnitude to experimental observations. In addition,
however, we also have short pasSs- ranges, l.e. those at which the
distance between atoms is less than pg, which 1s determined by
formula (15); we wish to ¢all these collisions. The effect of
collisions on the width of the spectral lines cannot be determined
Just by the energy loss, since the oscillatory amplitude of the
electron can change not only in magnitude during them, but also

in &ign, as can be seen from the calculation of the next higher-
order approximations for solutions to system of equations (7).

The change in amplitude is a function of the distance at which the
atom passes and, since the value of thils distance within p, 1s
random, we can assume that positive and negative valuesaof iim
amplitude which do nof exceed their value prior to collision in
absolute magnitude are equally probable after collision. In

other words, we expect a discontinuous change in amplitude at the
instant ofcedllision such that its mean is equal to zero, Such /396
a concept for the collision mechanism leads to results which are
analogous to the ordinary Lorentz!? theory of collision damping,
l.e. it yields the same line width and form. Our approach allows
us to thecoretically determine the principal parameter in

Lorentz's theory -- optical collision diameter; in our case,
optical collision diameter wlll be the quantity py given in
formula (15). TFor the line width due to collisions we obtain

Lo nm Ne=gn e A ] (20)

" Hiwy,

12 gee Supplement II.
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By combining (19) and (20) and multiplying by f, we obtain the
final expression for the width of the spectral line in a homoge-

neous gas:

1= . ¢ .
Fam fRI A0y == 0 N
.l_f(r i -h') 3 "”mkl I (21)

This formula differs only by .the coefficient 8/3 from the
expression which Weisskopf [4] has already compared with experi-
ment. Welsskopf found here that agreement with experiment is
satlisfactory. Our formula gives a value which is approximately
three times as large for line width than does Weisskopf's formula,
and this 1s a correction in the right direction -- to say nothing
of the fact that the conclusion indicated by Weisskopf's "‘formula
is untenable -- since the values indicated by Welsskopf are in
all cases smaller than observed experimentally. To be sure, we
can still not use our formula to explain the pronounced broadening
of the mercury line observed by Ortmann and Pringsheim [2];
according to the measurements by these authors, the width observed
experimentally exceeds the theoretical value given in formula (21)
by a factor of approximately five. The ideas developed later
(in Section 5) show that we must consider expression (21} to be /
the lower limit for the value of spectral line width in a éigl
homogeneous gas. We can therefore assume that Ortmann and
Pringsheim's results do not contradict the theory which has been
developed. It should also be noted that the dispersional distri-
buticon of line intensity occurs, when the frietion effect is
taken into consideration, 1n the case in which oscillation
amplitude falls off strictly exponentially. In reality, however,
the exponential decrease in amplitude is somewhat deformed, ‘gs
can be seen from the physical cause of friction; we can probably
relate this to the slower regression in intensity observed ex-
perimentally by Minkovski [3] than in the case of the dispersion
formula, since these deformations must have a more pronounced
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effect on the intensity of those freguencies which are far from

wg (on the "wings™ of the line). It is precisely at this point

that Minkovski alsc made hils measurements. To be sure, it is
difficult to evaluate the value given on the above-mentioned
grounds, even in order of maghitude, in order to be able to state
with certainty that the experimental observations can be explained.

We now go to a quantum theory consideration of the problem.
It provides a result which is analogous to the classlcal theory
which has been discussed and thus serves as confirmation of the
correctness of the results obtained by classical means.

I, Quantum Theory Approach

We know that the natural width of spectral lines is caused,
in quantum theory, by the uncertalinty of enérgy terms which
result from the finiteness of the lives of excited states. In the
case of an isolated atom, the life of the excited state is deter-
mined only by interaction with the radlation field. In our case,

however, we have not only the atom's interaction with the field

™~
oV
\Yo
@

but alsoc an interaction with other identical atoms, which causes a

shortening of the life of the excited state and thus produces an
additional uncertainty in the terms. At a sufficient gas density,
dncertainty . in energy terms due to the second cause will pre-
dominate. Thus we can neglect the broadenlng of energy levels due
to the loss of energy to the radlation field, and we need consider
only the transfer of energy to surrounding atoms. Accordingly,

we can approach the solution of this task as follows: Without
considering decay due to radlation, we shall have to determine the
change in the probability amplitude of the exclted state with time
due to the presence of a link with other atoms. Due to the specl-
fic degeneracy of the problem (equivalent atoms), the probability
amplitude of the excited state changes -- even with limited
coupling (dipole energy of 1nteraction, long pass ranges) =--

to a much greater degree than due to thé presénce of a coupling
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with the radiation field. If we substitute the wvalue found in this
manner for the probability amplitude of the excited state into

the equations of Diracts radiation theory, which yield a change in
the probability amplitudes of both the atomic states and the
radiation field, we can determine the latter. The distribution

of probability amplitudes over the frequencies of oscillators in
the radiation field will also yleld the width of the spectral

line.

Let us determine the change in the probabllity amplitude of
the excited state for the case in which the emitting atom passes
¢lose cto the unexcited atom. We shall describe the motion of the
atoms themselves classically and restrict oubselves to a considera-
tion of long pass ranges only; theilr exact determination, in
analogy to the classical, wlll also be given below. For the
energy of interaction we use the dipole energy of lnteraction given
in formula (6) for thls reason. As the result of atomic motion,
the energy of interaction will net be constant, and its dependence /399
upon time will be determined from formula (10). In further dis-
cussicn, we shall 1limit ourselves to the case of atoms with a
spherically symmetrlcal field. For the additlonal states, we
assume an s-state for the first (unexcited) atom and desilgnate
the amplitude of its wave function Pnog(l), where the subseripts
are the gquantum numbers n,L,m. For the second, emitting atom,

we assume a wave function of the form
ﬂ'-:’mlo (2) + C'\:J"c‘.] (2)’ ( 22 )

corresponding to the polarlzation of emitted light along the

z—-axis.

Since the possibility exists of an exchange of energy between
the individual atoms, the system under consideration possesses
gsix-fold degeneracy, due to the three-dimensilonal degeneracy of
the exclted state of two ldentical atoms. As a result of the
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slowness of the atoms'! thermal motion, the transitions will

essentially take place between the iscenergetic states. We there-

fore seek the wave function for an arbitrary time during passing
in the form of a linear combination of the functions:

‘¢@i0=wﬂwmuwm@Hﬂmwmm%hm+
- @ (1) Yuoo (1) fanr =1 (2) by () Puro (1) 9mo0 (2) -

' EntEm
by (1) 11 (1) D00 (2) + by (1) Gm1—r (1)?nw(2)}-e‘ h f—}-— (23)13
: IEn S
S (1) %uon(1) o (2) € F /

I'4

If we substitute (23) into the wave equation

-

[H(l)-{-ﬂ(:!)—[— '(1,2,8)—ih %] ¥(1,2,7)=0 \‘
: !

and take into consideratlon that the mean values of the codrddnates
of the electrons are equal to zero in the unperturbed state, we
then obtailn the system of equations for determining the coeffil /400

clents as functions of time in the conventicnal manner:

dby  mieo

R T P
ih if;! = Vi mo @y Viormit @3+ Valbymic1 dy
| i = VIR oy ViRt o+ Vi e,
-, da, n00; m19 ' : nm-'n';lo '_ u00; w10
Cih =3 = V. no b Vel 100 Oy == Vai2n: a0 &y -
= TR+ VR VR, (o)
in S VTR b+ VIR by VIR by

T B AR i B i LN

1% 1 refers to Planck's constant divided by 2w.
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where the coefficients for the amplitudes are matrix elements for

the energy of interaction, e.g.

.

8 [ a0 1) a0 () ¥ (1 2.1 o (1) o (2) s

Vmu mie =

We shall solve system of equations (24) by the usual method of
successive approximations,, taking the low energy of interaction
into consideration. As 1n the classlcal approach, we alsc assume

here that interaction begins at time t = 0, at which the emltting
atom is at a dilstance of -vt/2 from the base of the perpendicular

p. The amplitude: values for this time will be

a; (0)=a; a,(0)=0; a,(0)=0; \
b, (0)=0; b,(0)=0; b,{0}=0; ¢, (0) =c.

For the first approximation, we obtain the followlng at time Tt:

a=a; G&=0; a,=0; )

=%f V,'::,},",::’.‘Bdt by = fvuog,'.:‘l’g

j V""“J.:B“ dl.

/

(25)

If we use the expression for the matrix elements of the coordi=al

nates, :
* j - 1 2
‘ (1100|7:r»|mll)— (m11}xin00) = -2-1/3- Trms

(00| m1—1) = (m 1—1}2 | n00) z-__.%_l/%,.“-m

(nOO]ylmll)— (n00 |y |m1—1) —m;]/_g,,.m,

(m11|y|n00)==(m1—1|y|n00)=— ..z. ]/';"'ﬂw

1
(nOOi | m10) = (mlO]-in(}O) =175
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where rp; is the matrix element for the radial part of the wave
function . which corresponds to the transition between states with
principal quantum members n and n1andﬁsubstiﬁuteuthemnatrix elements

for the dipole energy of interaction, we obtailn

1 — 3cos? !
b, H-fe-(1:00|~|11110) f(————— T)dt ,

05(Cos £C08
: b.=b:=-—-—-""‘_' (HOO'ZI”!IO) J" S.( a' B)dt

If we use formula (10) and integrate, then as T = = we obtain

a 1 \
b, = 7 2¢% (n00 | = | m10)? v_(l — eo0s®y,— 2 costy,), N

== 1/ 3¢t (200} 2 11::10) [LOS 1, (cos :,—zcosﬁl)—i-

- +2cos1; (cosa, —icosB)).

For the sum of the squaregsof the moduli of the probability
amplitudes we have ’
\

N e F—a“ hj:‘ ,,sm-*;,(n()O{:[mlO)* '
(26)

The change in the amplitude of the excited state during the time /402
of passing will occur in the second approximation. If we con-
sider the normalizing condition

|G 1 iy 10,58, 2 ey 2= [a P el

and the fact that the weighting of the state Yppp(l)lypgp(2) does
not change, we obtain the following expression for the change in
the square of the amplitude of the excited state:
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Wi sin®+, (n00| = | m10)*

=—|af

If, in place of the matrii element, we introduce oscillator
strength, which in the formula

i

fom == 5 o (n00 |2 10y | (27)

corresponds to the m = n transition, we finally obtain

1
’ A|a]_’:—|a|’ fnm lvgsul-"l

(28)

1n'mmn

Let us determine the total change in probability due to the
successive passes of the emitting atom close to the unexcilted
atoms. We can use expression (28) up to A]a|2 = |a|2; this
equation gives us the minimum Py UP to which we can still con-

sider pass range to be long (cf. the classical approach}, i.e.

Po== ]/ MOy ame - ! (29)

The number of atoms which appear within 1 sec and lle between
p and p»+ dp is equal to 2mpdpvN (N is the number of atoms in
mummz). We obtain the total change in probabillty durlng this
time by integrating with respect to p from pg to =:

| d|

P

s 1 i 2mdp W
r—d — f;wr ;5 SN~ J‘ '_Pi" vN =

m*e

Fa
| —_—xia:’ fnmNsln‘l T . D
) . - ' '"l R
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and, after averaging over Y1, = We obtain

. 2n F .
fap=lagFe ™" m==— —famN. / (30)

It can be seen from.this that the excited state has a finite life
which depends upon gas density.

We use Dirac's theory of light to determine radlation.
If we designate the amplitude of the probability that the atom
will be in state n and the field will be in the state determined
by quantum numbers NyNp ... as an,NiNp...s the equatlons for
determining the amplitudes will have the following form:!®

‘ Ew, xyNy ...~ En, NV,
o Ay Xy NY g NN P i Es
ih——p =2 = % Hp 'y N @u oy, 8 b
dt. i : (31)
n', NN / ] =
where HO8S5 ~ 1s the matrix element for the energy of inter-

action between the atom and the fiéld. If we assume that the

atom 1s excited at £t = 0 and the enefgy of the field is equal to
zero, 1l.e. that ap 0o...050... = 1 and all remaining an' NjNs...

= 0, an appreciable weighting will occur with time: first of

all, on the excited state in thé simultaneous absence of quanta

in the radiation field (ap,00...0g0...7); secondly, on the un- i
excited state, likewise wilthout quanta in the field (an,00.+.0g0:.-);
and, thirdly, on the unexclited state in the simulbaneous presence

of a gquantum of type s (an,OO...SO---)s the frequency of which

must be close to the frequency corresponding to the m.+ n

transition. The latter will also determine the emission spectrum

14 see Supplement I.

1S For example, see [17].
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amplitudes in system of equations (31}, we obtain the following

equations for determining the probabllity ampllitudes of the

excited radiation fileld:
dts 00 1 (ﬁ

L =Ho ! oo ... () fumm )t

where wpp is the frequency of the m + n transition, and wg is
radlation frequency. If we substitute the expression found above
and the expression from formula (30) for the probabillity amplitude
of the excited state of the atom as a functilon of time!®, i1.e.

—_— = |
thy
iy s Li¥ ]
2

dm,-m.._. (f) =a (f) =€

into the right member, we obtain the following for the amplitudes
belng shought:

P o
o s oumd =3 '

=%

a,, .. (’)'_- H:a $ UBO - )]' '

_:,.Iw,_m,,,,..+; M| (32)
2)|

As t » «, the atom goes to the ground state and a certain probabil-
ity for excitation :of the field occurs; the probability distribu-
tion for energy in the radiation field at this time, by frequency,
will be:

. const \
I{w)=const| as, w...10...(c0}} = - \

(oot + (%“) \ (33)

18 It can easily be seen from equation (24) that the phase of the
excited state 1ls independent of time in the approximations
considered.
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which agrees with the emission spectrum of the decaylng classi-
cal oscillator, for which w, = wnm. For line width, we obtain

the expression

o "o e .
Op == =t — — — N
T T8 ey, From ; (34)

which differs from formula (19), derived from classical considera- /405

tions, only by a factor of fnm.

We had assumed here that the line considered corresponds to
the atom's transition to the ground state, but we can easily see
that 1t need not necessarily be so. The effect mentioned willl
also have an influence on the width of those lines which corres-
pond to the transition between two higher levels if a transition
to the ground state is not forbidden, at least for one of them.

5. Conecluding Remarks

The ideas developed, based on a consideration of radliation
from one atom, are applicable only to gas densities which are
not very great. At higher density, when the "free path time"
of the atom becomes comparable to "collision time," a radiation
also becomes appreclable in the spectrum that occurs within the
time of principal interaction heftween the atoms. This radiation
may no longer be viewed as if it propagated from one atom; rather,
we must study the radiation from the diatomic system which forms, N
as a whole. It does not appear possible to us to take the
effect of the radiation on:the form and width of the spectral
line during collision time into consideratilion exactly, so we
limit ourselves to a qualitative study of this effect. Striectly
speaking, we would have to know the exact form of the functlon
that describes the light wave in order to find the emission

spectrum, and we would then have to resolve it into a Fourler
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integral. Since this is impossible,-we must be satisfied -- as
is usually done in such cases —— with the qualltatlve determina-
tion of frequencies that are emitted during cellislons. If we
assume that the intensity of these frequencies in the spectrum 1is
proportional to their lives, wé‘can draw a number of conclusions
regarding the form and width of the line even at relatively high
density!’.

Thus at relatively high density, the emitting atom will often 4gg§
be close to ancother atom of the same type; in order to study the
radiation which occurs here, we can consider these two atoms as
a molecule in which the levels which result upon the dissociation
of an excited and an unexcited atom are excited. The wave
function for such a meolecule can, in the oth approximation, be
formulated in the form of a linear combination of products of
the functions for the isclated atoms. We calculate the frequency
of the light which is emitted by such a molecule, taking the
dipole energy of interaction between the atoms generating it into
consideration as a perturbation. We can neglect the degeneracy
of the system due to electron exchange and take only energy
exchange into consideration; this is immediately permissible in
the problem under discussion. If we orient one of the coordinate
axes, €.g. [, along a line connecting the atoms, we obtain the
following form for the formula for the dipole energy of inter-
action (6):

»

. e .
[:R*f;(=|=z+"il7iz—2‘l':- | (35)

The excited molecule can be in a I - or a II state, the latter
being doubly degenerate corresponding to the two directions of
rotation. The eigenfunctions for these states -- they will be

17 For example, see [4].
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prominent precilsely because of perturbation (35) -~ can be for-

mulated as follows in the oth‘approximation:

e 11_ B0 (1) G0 (2) F Yuto () b (2D |

NJ

o4

W (36)

{ w00 (1) Y1 (2) - '-',lmti (1) 2n0 (2) :

._.
'o—n "’.—-
ta]

: :'Juo(]) Yml—1 ())_i‘ T I(l) "nﬂ)(’J}

o
[AVN

Here, Vno0(l), vp1o(2), ete., represent the eigenfunctions for

the first and second atoms, respectively, in each case. The

subscripts refer to the values of quantum numbers n, & and m of

the particular state!®. Accordingly, the change in energy due to /407
perturbation (3%) will he

et 1
felde == — —— 53 1
= =f‘l VWed< mwofR:'
... 1 ¢ 1
;n:f‘l"nl'qnd'—"ll__{ Ll e

Here, f is oscillator strength, which is determined by relation
{(27). From this we obtalin the emlitted frequencies

'® The system being consideredy consisting of two identical atoms
-~ in a:;'state at lowest energy, 1s not degenerate and is described

in the 0th gpproximation by the function Ynoo(llpmio(2); the
next, first excited state, the only one in which we are inter-
ested, on the other hand, already possesses slx-fold degeneracy;
if we calculate by the conventlonal method of perturbation
theory, with interaction energy (35), we find that this de-
generacy 1s partly eliminated and symmetrical expressions (36)
are functions in the 0oth approximation, as are the antisymmetric
expressions, although we did not take the laftter into considera-
tion, since the states corresponding to them do not combine
with the ground state and therefore did not manifest themselves
in radiation.
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We can interpret these calculations classically as follows: If

we assume that the two similar three~dimensional oscillators are
separated by a distance R which is small compared to the length

of the light wave and that they interact with the aid of the
dipole fields in accordance with (35), then the osclllations of
the oscillators along similar coordinate axes will be linearly
coupled in pairs; osc¢illation g7 will be coupled only with zo,

£1 with €2, and nq with np. FEach pair will possess two normal
frequencies which correspond to the parallel and antiparallél
oscillations. Only the parallel oscillaticns will be optically
active, while the antiparallel oscillations will not be operant in
emission, since no change in electrical moment 1s assoclated with /408
them. The frequency emltted as the result of oscillation on.

r will be shifted toward the red, but those .oni £ and n, toward
the vidlet; the magnitudes of the shift will also be equal in i
the first approximation here, up to the factor f, which figures

in expressions (37).

Thus the radiation during interaction will result in a cer-
tain additional asymmetric broadening. To be sure, the asymmetry
wlll not be gross, for although the frequency shift in the red
direction is twice as large as that in the violet direction, the
statistical weighting on this shift is itself only half as great.
It seems.to us that 1t would be impossible to say anything more
precise concerning the form and width of fthe line, It must be
noted here, however, that this peculiar "Zeemann effect" (in the
sense that the degeneracy with respect to m is partly eliminated
in its case) has no little influence,due‘to the relatively slow
decreases 1in Interactlon forces with distance. We must therefore
consider our expression (21) to be a lower limit on the broadness
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of the spectral .line in a homogeneous gas; this should agree with

experiment in all cases.

We note in closing that transferred energy € 1n our formula
(13) is a function of the angle which the direction of the
relative motion of the atoms forms with the direction of oscilla-
tion; we should also be able to find this asymmetry of cross
section experimentally, e.g. with a molecular beam. We hope to
be able to discuss this problem in greater detall elsewhere, as
well as the effect of the interactlon of similar atoms on the
polarization of resonance fluorescence and selective scattering.

SUPPLEMENT T

Passes

When the emitting atom passes elose to an . unexc¢ited atom,
the energy lost 1s
te=FE

m-w 1°p

(13)

el ! slﬂz Tr- fl
r
|

In order to determine the total change in energy which 1s caused /409
by successive passes, we imagine, for the sake of simplicity,

thiat all atoms, including the emitting one, move at velocities w
which are equal 1n absolute value and randomly oriented or =--

what amounts to the same thing -~ that the emitting atom is im-
mobile, and the remaining atoms move all around the emitting atom;
a negative velocity for the emitting atom itself must be added to
their random velocities. The various passSes.will differ in range
p and the angle Yy, between the direction of the emitting atom's
electrical moment and the veloclty v of relative motion. The
presence of motion on the part of the nonemitting atoms, too, 1is
important for the problem being treated, since it determines

averaging over Yyj. Tt 1s interesting that motion only on the part
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of the emitting atom 1n an environment of immobile atoms does not
yield the required line width when only long pass ranges are
considered. The reason for this is that the intensity of radiation
is determined in this case primarily by the emitting atoms with
electrical moments oriented along the lines of passage (y3 = 0),
for whieh, however, decay is equivalent to natural decay.

If the z-axls is oriented opposite to the absoclute velocity
of the emitting atom, we obtain:

v = 2ucos g .

for the magnitude of the relative veloclty of the other atom, .
where 6 indicates the angle between relative velocity v and the
z-axis. The angles © and ¢ of relative velocity v are connected
to the angles 96 and ¢ of the absolute velocity of the unexcited
atom by the relations

O =8/2, & = ¢.

If we use a fto designatei.the angle between the direction of the
electrical moment p of the emitting atom and the z-axis, we obtailn
the expression

o8, = ¢os x cos 8- sinasin B cos ¢

(38)

for the angle Yy from the spherical triangle formed by (z,v,p).
The probability that the absolute velocity of the unexcited atom
is in a direction between 0 and 6:+ 408, ¢ and ¢ + dp will be

T T sinddady |
W pdide =2 7. |

b

For relative velocity we then have, correspondingly,
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sin 20d64d% ,
WS, $) dOdd = ———— . i

Since energy will essentially be transferred when the passing
atom - 1s located clase to the base of the perpendicular p, we shall
assume that all those atoms receive energy that cross the plane
which is perpendicular to their paths and contailns the emitting
atom. The number of atoms which pass at a distance between p

and p + dp from the emitting atom in the directions : © and ¢

during time element dt is

dn = NI¥ (00) dod2zpdsrdt = Nvdtpds sin 28d8de. | (39)

For the total quantity of energy which is lost to the group of
atoms dn, we thus obtain the following from formulas (13), (38)
and (39):

dp

: e 1 C o .
ein=E et Ndt i 20d0d® {1 — (cos a cos 8 1 sin a sin O cos D)%

We obtain the total energy loss for time df by integrating
with respect to the three variables: from ppy to = with respect
to p; from 0 to ©/2 with respect to @; and from 0 to 27 with
respect to 0.

Integration with respect to p and ¢ yilelds

f" dE = —E"T';-.; N P%?Sin 2848 {1— cos®xcos’ B — %sin?a sin” ti} dt. ‘I

/ . " v -
If we use formula (15) for the lower limit of p, and integrate
with respect to @, we obtain

. i di ——pr_ € 1. .
and, from this, L E=— B N (14 4 osinta) a, }
Iamoem apliptapety - -
B
where a d E=Eg", i
, - N -
| ?‘EEE’&“*EQWQ' ) (40)
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Formulas (17) and (18), in which we had neglected the slight
dependence upon o, follow from the above.

Quite analogous considerations also result in formulas (30).

SUPPLEMENT TI.

According to our ideas pertaining to collision, i.e. for a
pass during which the distance between atoms is less than the
Po determined by the formula

4
e 1 ,

PV Twae (29)

the amplitude of the oscillator changes discontinuocusly and some-
times has positive, sometimes negative values after collision, the
magnitudes of which do not exceed absolute value prior to
collision. We therefore assume that the oscillator was not

osclllating from £t = -« to t = 0, that it was excited at time
t = 0, and that it was then subjected to collisions at times
tl,tg,...,tk,..., 80 we cah write
— Py ' |
sy=dpe 7 cos(eyttg) , L<t<lhye | (41)

The function z(t) determined in thils manner can be represented
in"the form of the Fouriler integral

deo |
where / =U)=J'g(m)e““'dm N
|
|

/ 1 - ~fw
D ogw=gfaweia
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In order to obtain the sought intensity distribution in the sapec-
trum, J(w), we must square g(w) and take the average, 1.e.

J (=) = const | ¢ l.w) [ t

From formulas (41) and (42), we have

)= { A':_"[ et }*”'l' 4l M)H’,-—t]ﬁ" . \
k=-0 te )
<2 { "l(-u..-*-=)fk+1+‘.-l-'p_&"k+l-e'-l(m"'m)'kﬂl-?'k' \
=L Ny, d : —w} - 1,2 -
& ot el w2 (43)

. ) o
B T T LR E o R ‘;' i _ o~ iltwrtobtptel—7 Tk
4 _ - } /
- i (w, — w4 po/2 ya

In the vicinity of the line, i1.e. for the values of wy close to
w, We can neglect the second term in this formula; when we then
find [g(w)]2 and average it, we see that the terms with.the
product AgAgt vanish for k # k', due to the assumption made
regarding the behavior of amplitudes upon collision, so we can

Immediately omit them and write

' "0 | fw—w)p— En & .\
| = | iy — @)~ 50
"yt o S
] R T2 1 cos(a— o) | (44)
162 N
P (o0~ o+ (%)

where = T — e ' f

refers to the time between two successive collisions, The
quantities Ay, ty and 1y are independent of one another; we can
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therefore average separately for them; averaging yields a certain /412
constant for the first two quantities which is Independent of w

and thus is of no importancé‘for intensity distribution in the
Spectrum. In order to average over fk, we proceed by the usual
method. The probability that T, lies between 1 and T + dt is

Here, t, is the mean time between two collisions, given by

[ Ty (45)

Thus we obtain

- e _h.' e .
! - 2 ¢ W, —wjT —
J (o) == const:|g (=) [* = :-nrmst.‘.fl s ze w:o( 7 )¢ e
b (“’ﬂ—“’Jz"i‘(‘E)\

The integrals which occur here can be taken from tables. When we
evaluate them and make elementary transformations, we finally
obtaln

(46)

i.e. the dispersion distribution with width

y

-
i

ta]; !

-
-+ +

Taking (45), (29) and (30) into consideration, we obtain (21) for
the width of the spectral line!in a homogeneous gas.

Strictly speaking, we would have to use ﬁ, which is gilven by
relation (40) (up to a factor of f) in place of u, everywhere,
and later we would have to average With a (46). However, this
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results in a formula which is not immediately clear and which
vields a curve for the quantity J(w) that deviates somewhat from
the dispersion curve only close to the center of the line and
could hardly have physical meaning. We can thus neglect the
small term which is a function of o or use its mean directly, as

has been done here.

In closing, we consider it to be our pleasant duty to ex-
press our most cordial thanks to Profs. I. Y. Tamm and M. A.
Leontovich for their attention to and interest in this work.
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